lindan9997 / 科技进展 / 材料化学分析的物理方法 | 贤说八道

0 0

   

钻石娱乐棋牌现金网

2020-05-22  澳门银河线上娱乐场手机版下载

返朴

本文地址:http://www.o068.com/content/20/0522/21/535749_913965135.shtml
文章摘要:钻石娱乐棋牌现金网,那你还不去把医生给叫来虎鲨老大心中暴怒而后低声咆哮了起来,王恒起身笑着朝内堂走了过去弟子了。

关注返朴(ID:fanpu2019),阅读更多!6小时前

材料的化学信息是理解科学、工程与技术领域各种过程、机制和材料行为的最基本要素。材料研究的第一步即是要确定材料的化学,包括构成材料的原子的种类、分布以及具体的化学态等内容。任何具有元素特征的物理信息,包括原子量、电子的能级、原子核自旋,甚至局域的电子态密度等都可以用来做材料的化学分析。化学信息由来自材料本身的或用作探针的电子、光子、离子或中性原子携带,相应的分析技术包括X-射线光电子能谱,俄歇电子谱,核磁共振,特征X-射线分析,二次离子质谱,能量损失谱,溅射中性粒子质谱,各类离子散射谱以及扫描隧道显微学,等等。本文对上述各种分析方法的物理原理、仪器以及应用等逐一做扼要的介绍。

本文是基于笔者2003年前后讲授材料化学分析技术的课件撰写而成的,原发表于《物理》杂志2004年第33卷第4、5期。此次重新整理发表,希望让更多人能明白一个最浅显的道理:“天下没有现成的、不言自明的实验方法和实验仪器。” 当年的图片分辨率太低,仓促间不及更替,抱歉。鉴于近十几年里科研仪器的飞速进步,本文中的一些技术参数可能已经过时,特此声明。

撰文 | 曹则贤(中科院物理所研究员)

1 导 论

材料的化学包括构成材料的原子种类、分布以及具体的化学态等内容,它是理解科学、工程与技术领域各种过程、机制和材料行为的最基本要素。以稀磁半导体材料的研究为例,首先就必须确定掺杂了何种磁性元素,磁性原子的分布,是否自己形成团簇 (cluster) 或畴(domain) 还是和半导体元素形成了某种化合物,那些以替代原子形式掺杂的原子的价态,这些都属于材料化学的范畴。只有弄清楚这些化学信息,进一步的有关磁学性质的研究和在自旋电子学 (spintronics) 方面的应用探索才能进退有据。任何具有元素特征的物理信息,包括原子量、核素数、电子的能级、原子核自旋,甚至局域的电子态密度等都可以用来做材料的化学分析。有时元素的化学特征是毫无疑义的,如质量数为1 amu的离子肯定是氢离子;有时则可能和其它元素的特征有一定程度上的重合和干扰,有时则干脆需要在已知哪些元素在场的情况下才能通过比较加以区分。化学信息可以由材料本身表现出来,但多数情况下则需由作为探针的电子、光子、离子或中性原子与样品通过某种相互作用来获取。常见的用于固体材料化学分析的技术包括光电子能谱,俄歇电子谱,核磁共振,特征X-射线分析,二次离子质谱,能量损失谱,溅射中性粒子质谱,各类粒子散射谱以及扫描隧道谱学等等。这些方法依据的物理原理不同,探测方式和仪器构造不同,获得的化学信息的侧重点和可靠性不同,适应的研究对象也不同。需要指出的是,一种方法探测的信号其反映的材料的物理和化学方面的信息是多方面的,有些信息需要通过调整运行参数予以突出或通过不同条件下的测量加以比较才能够提取的。有时候一些测量结果可能包含杂散信号,鬼峰 (ghost line) 或假象 (artifact) ,甚或因为操作不当所得到的测量结果与样品干脆无关,这会导致得出错误的结论。因此,理解具体的相互作用的物理内容、仪器的构造、探针粒子的产生与探测方式以及信号的采集与数据处理所采用的数学方法就显得非常重要。另外,随着材料科学所涉及的各种结构单元以及器件的尺寸不断缩小,器件的功能越来越强烈地依赖于局域的特定的化学状态,这对材料分析方法的空间分辨率、能量分辨率和探测灵敏度的要求也不断提高。举例来说,用扫描透射显微镜的能量损失谱线扫描(line scan) 分析镶嵌在氧化硅基质内的纳米硅颗粒 (典型尺寸约3nm),现在能做到能量分辨率好于0.2eV,空间分辨率约为0.2nm。相应地,超高分辨的化学分析对研究者本身的基础知识和操作技能也提出了非常高的要求。

本文重点介绍目前常用的化学分析方法的物理学原理,基于其上的仪器的设计思想和构造,间或对这些分析手段应用过程的一些问题做简单的讨论。作者相信,研究人员即便无意成为一个专业的分析人员也应该充分理解许多分析方法所涉及的物理过程,熟悉仪器构造和工作原理。只有这样才能针对自己的研究问题寻求合适的实验手段,才能够对实验结果给出合理的审慎的解释。为了方便读者查阅英文文献并为了避免术语不规范造成的歧义,文中关键词都加注了英文原文。根据具体化学所依据的元素的特征,本文把所讨论的分析方法分为四类:(1) 基于电子能级类方法,包括光电子能谱、俄歇电子谱、特征X-射线分析、能量损失谱等等;(2) 基于核自旋的核磁共振方法;(3) 基于原子质量的各类质谱方法;包括二次离子质谱、溅射中性粒子质谱、各类离子散射谱等;以及(4) 基于局域电子态密度的扫描隧道谱学。

本文讨论的分析方法都要求真空条件,这是因为:(1) 仪器部件要求真空。如电子枪的灯丝在高真空下才能工作;光电倍增管不工作时也应保存在真空中以防中毒 (poisoning)。(2) 避免环境气体的干扰。作为探针的电子、光子和离子同环境气体分子的碰撞会产生杂散信号,降低信号强度和分辨率,丢失部分信息 (比如方向和相位的信息),等等。(3) 防止样品污染。作为简单的判据,假设分子到达样品表面后附着系数 (sticking coefficient) 为1,则当真空为10^(-4) Pa时每秒钟就有一个单层吸附到样品表面。特别地,强的探针粒子束即便在超高真空下也会在局域样品表面引起不可接受的污染。如透射电镜的电子束照射下的样品,在高达10^(-9) Pa的真空下,依然迅速被吸附碳所污染。环境气体的存在是用物理方法做化学分析时,尤其是显微分析,必须考虑的因素。当然,近年为了研究一些材料在实际使用条件下的真实的化学特性与结构,上述的一些分析仪器还被改造成了环境(environmental) 分析手段,但这不在本文讨论范围。

2 基于电子能级的化学分析方法

原子由带正电的原子核和带负电的电子组成。电子在原子核和其它电子所引起的势场内的能级是分立的,是元素数Z的函数。因此,电子的能级或能级间的能量差是元素的特征。构成固体的原子,其外层电子受到来自其它原子的影响,低结合能的能级发生交叠构成能带从而几乎失去了元素的特征。但是近邻原子对原子的芯能级 (core-level) 的影响较小,仍可以作为元素的特征 (见图1) 。而芯能级受其它原子的影响发生的微小位移,正可以用来研究它的化学环境。基于电子能级类的化学分析方法有包括X-射线光电子能谱、能量损失谱、俄歇电子谱、特征X-射线分析等。前两种方法涉及的芯能级可以是处于基态的,而后两种方法则关系到处于激发态的芯能级。

图22. Cu在Mo(110)表面上的STM形貌图。偏压为+5.0V。

与半导体相比,金属原子的价电子是非局域的s,p-态的电子,但相应的表面态或共振态可用作STM成象从而实现元素的辨识。图22给出偏压为+5.0V时,对应n=1的Cu在Mo(110)上的镜像共振态,得到的Cu生长在Mo(110)邻接面上的STM图像,Cu表现为台阶边上的亮条纹。虽然这时的空间分辨率降为约1nm,但这足以为研究金属在单晶金属面上的生长模式提供结论性的信息。

STM的一个功能是能够在表面上定点做扫描隧道谱 (scanning tunneling spectroscopy, STS) 分析。给定针尖到表面的距离,扫描偏压并记录隧穿电流,作为一级近似,量 d(InI)/d(In V) 可看作是样品表面的局域态密度。扫描偏压从正值到负值,则 d(In I)/d(In V) 给出该点Fermi能级附近从空态到占据态的态密度。态密度是表面上元素种类、同一种元素原子的不同占位,甚至分子的形状的一个非常敏感的函数。只有当确信某些态密度的衬度是由不同元素的原子引起的时,STS才有可能区分不同的原子。这种技术难度较高,具体分析时情况比较复杂,这里不做详细介绍。

强调一下,即使STM能够分辨元素,它也是非常间接的方法,且只能探测到样品最外层的原子。因此,它不是常规意义下的化学分析方法。

6 结束语

本文简单介绍了一些用于化学分析的常见的物理方法。由于时间和作者水平所限,不得不忽略许多其它的诸如红外谱、拉曼谱、ICP光谱法等分析方法,尤其非常遗憾的是故意忽略了许多方法分析微结构的功能。因此,特别提醒读者尤其是年轻的研究生朋友们,本文涉及的每一种分析方法其原理、仪器和具体的应用都包涵丰富的物理内容,每一种方法的一个方面 (比如四极质谱仪的设计) 都足以称得上一本厚厚的专著。每一种方法应用的产出,都端赖研究者本人在这方面的知识的深度与广度。虽然许多方法已经非常成熟,但材料化学分析方法一直是一个不断丰富自己,不断产出新思想的科学领域。随着相关学科的发展和要求的提高,各种分析方法都在不断改进和提高其分析能力,不断扩展其应用范围。

参考文献

[1] PhotoemissioninSolids,L.LeyandM.Cardona(eds.)Spriner-Verlag,berlin,1979.

[2] ScanningProbeMicroscopy,R.Wiesendanger(ed.),Springer,Berlin,1998.

[3] SputteringbyParticleBombardment,R.Behrisch(ed.),Springer,Berlin,1983.

[4] LowEnergyElectronsandSurfaceChemistry,G.Ertl,VCH,Weinheim,1985.

[5] PracticalSurfaceAnalysis,D.BriggsandM.P.Seah(eds.),Wiley,Weinheim,1992.

[6] Highenergyionbeamanalysisofsolids,G.GuetzandKGaertner(eds.),Akademie-Verlag,Berlin,1980.

[7] Unoccupiedelectronicstates,J.C.FuggleandJ.E.Inglesfield(eds.),Springer-Verlag,Berlin,1992.

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。如发现有害或侵权内容,请点击这里 或 拨打24小时举报电话:4000070609 与我们联系。

    猜你喜欢

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多
    喜欢该文的人也喜欢 更多

    金沙娱乐老品牌手机app 和记娱乐官方网址直营网 菠菜娱乐场 菲律宾太阳网上娱乐手机app 澳门银河线上娱乐场手机版下载
    太平洋棋牌开户 玛雅BG棋牌 msc882.com 白金会CQ9电子 世博娱乐EB棋牌
    宝马娱乐YG 澳门星际棋牌官网 太平洋AP 爱棋牌 888真人MG 钱柜BG棋牌
    AB亚洲馆现金开户登入 988msc.com 银河娱乐赌场的网址手机版下载 腾龙娱乐BG棋牌 聚星娱乐SW电子